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Abstract

An alternative vibration isolator that incorporates on–off friction damper with fast excitation input at
the base of the damper is proposed in this paper. Friction is modelled using the Coulomb’s friction model as
well as the LuGre model. Analytical expressions are obtained for the effective damper performance under
fast excitation, and the performance of the isolator is studied in light of the effective damping
characteristics. Numerical simulation of equation of motion validates the analytical results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Passive vibration isolators are the most simple, inexpensive and reliable means of protecting
sensitive equipment from environmental shock and vibration. However, passive isolators are
seriously limited in performance due to fixed parameters values, specifically fixed damping. In
passive isolators with fixed damping parameter, transmissibility characteristics cannot be
favourably controlled over a wide range of frequencies by increasing or decreasing damping
value. Research on this topic has established that isolators perform far better with variable
damping or stiffness. Damping and stiffness can be varied either in active or semi-active manner.
However, due to low energy consumption, semi-active isolators are more attractive in practice.
Possibly, the first significant contribution on semi-active isolator is done by Karnoop et al. [1,2].

They have shown that when one end of the damper of an isolator is grounded, i.e., the damper
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force always acts against the absolute velocity of the isolated mass, isolator performance improves
remarkably, and this also circumvents the non-uniform effect of damping on transmissibility
characteristics. Such configuration is known as the sky-hook damping. Clearly, an inertial frame of
reference is required for hardware realization of the sky-hook damping, which is practically
impossible in most of the situations. Karnoop et al. propose a semi-active control technique to
emulate sky-hook damping, where depending on the sign of a predefined switch function, the
damper is electro-mechanically modulated to generate the highest and the lowest possible values of
damping. The switch function proposed by them is the product of the absolute and relative
velocities of the mass, and the damper is modulated to produce high damping when the sign of this
switch function is positive. By this arrangement, damping force either acts against the absolute
velocity of the mass or becomes zero. Rakheja and Sankar [3] propose a similar on–off control of
the damper based on a switch function involving relative displacement and velocity of the isolated
mass. With the advent of smart fluids, like MR and ER fluids, the hardware realization of semi-
active on–off control [4,5] has become much simpler, and this has found wider applications.
Although isolators based on fluidic dampers have a wide range of applications, these are largely

unsuitable for space and other applications. Friction damping has been proved to be suitable
in such situations [6]. Yamaguchi et al. [7] consider variable stiffness control of spring using
friction joint for vibration isolation. Nishitani et al. [8] consider variable friction damper for
vibration isolation systems.
In the present paper, an alternative vibration isolation system is proposed. The damper of the

isolator is a variable friction damper, where the friction force is changed by semi-actively
controlling the normal force on the friction joint of the damper. The rigid base of the friction
damper is subjected to a very high frequency low-amplitude vibration. The friction damper is
modelled using the steady state Coulomb’s friction model as well as the LuGre [9] dynamic
friction model. Mathematical models are developed, and theoretical analysis is performed using
the method of direct partition of motion (MDPM) of the theory of fast vibration [10] and the
singular perturbation theory [11]. Performance of the isolator is studied both analytically and
numerically. It has been shown that the effective damping characteristics of the damper are
favourably modified due to the application of high-frequency vibration. In this context, it is
worthwhile referring to literature related to the effect of high-frequency vibration (so-called fast
vibration) on non-linear systems. Recent research has established that fast vibration has non-
trivial effect on the damping [12], elastic stiffness [13], as well as dynamic behaviour [14–16] of a
variety of non-linear systems. These effects are known as the fast-vibration phenomena, and have
found wide practical applications [17–19].

2. Mathematical model

The mathematical model of a single-degree-of-freedom base isolation system with base
excitation X�

e ; and deliberately introduced fast excitation X�
f is depicted in Fig. 1. The damper in

the model is a semi-active friction damper. The normal force on the friction damper is varied
according to the following rule:

FnðX�0
;X�0

e ;X�0

f Þ ¼ N jX�0
� X�0

e � X�0

f jU½X 0�ðX�0
� X�0

e � X�0

f Þ�; ð1Þ

ARTICLE IN PRESS

S. Chatterjee et al. / Journal of Sound and Vibration 274 (2004) 893–914894



where prime ð0Þ denotes differentiation with respect to time t: Uð:Þ is the Heaviside step function
and N is controller gain.
The equation of motion of the system shown in Fig. 1 is written as

mX 00� þ mFn sgnðX 0� � X 0�
e � X 0�

f Þ þ kðX� � X�
e Þ ¼ 0; ð2Þ

where m is the coefficient of friction of the friction damper.
A non-dimensional form of Eq. (2) is as follows:

.X þ hð ’X � ’Xe � ’Xf ÞS þ X � Xe ¼ 0; ð3Þ

where the switching function S is written as

S ¼ Uf ’Xð ’X � ’Xe � ’Xf Þg: ð4Þ

The non-dimensional quantities are defined below:

.X ¼
X�00

o2
nx0

; ’X ¼
X�0

onx0
; X ¼

X�

x0
; on ¼

ffiffiffiffi
k

m

r
; h ¼

mN

mon

;

Xe ¼
X�

e

x0
; ’Xe ¼

X�0

e

onx0
; Xe ¼

X�
e

x0
; ’Xe ¼

X�0

e

onx0
; Xf ¼

X�
f

x0
; ’Xf ¼

X�0

f

onx0
;

and x0 is the amplitude of base excitation. The ‘dot’ denotes differentiation with respect to the
non-dimensional time t ¼ ton:

3. Theoretical analysis

3.1. Harmonic fast excitation

When fast excitation is assumed to be harmonic, i.e.,

X�
f ¼ Af sinðOf tÞ;
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Xf ¼ q sinðOtÞ with O ¼
Of

on

and q ¼
Af

x0
; ð5Þ

equation of motion takes the following form:

.X þ hð ’X � ’Xe � qO cosðOtÞÞS þ X � Xe ¼ 0; ð6Þ

where

S ¼ Uf ’Xð ’X � ’Xe � qO cosðOtÞÞg: ð7Þ

One should note here that Oc1 and q{1; such that qOBOð1Þ:
Putting Y ¼ X � Xe � q sinðOtÞ; one can rewrite Eq. (6) as

.Y þ h ’YS0 þ Y ¼ � .Xe þ qO2 sinðOtÞ � q sinðOtÞ; ð8Þ

where

S0 ¼ Ufð ’Y þ ’Xe þ qO cosðOtÞÞ ’Yg: ð9Þ

According to the MDPM [10], the displacement variable Y may be split into slow ðZÞ and fast ðfÞ
components as follows:

Y ¼ Z þ O�1fðt;OtÞ: ð10Þ

Therefore,

’Y ¼ ’Z þ f00 þ O�1 ’f ð11Þ

and

.Y ¼ .Z þ f00Oþ 2 ’f0 þ O�1 .f; ð12Þ

where prime ð0Þ and dot ð�Þ denotes differentiation with respect to T and t; respectively, and fast
time average of fðt;OtÞ is zero, i.e.,

/fS ¼
1

2p

Z 2p

0

fðt;OtÞ dðOtÞ ¼ 0: ð13Þ

Putting Eqs. (10)–(12) into Eqs. (6) and (7), one obtains

f00 ¼ �O�1f .Z þ 2 ’f0 þ hð ’Z þ f0ÞSf þ Z þ .Xeg þ qO sinðOtÞ þ OðO�2Þ ¼ 0; ð14Þ

where

Sf ¼ U½ð ’Z þ f0 þ ’Xe þ qO cosðOtÞÞð ’Z þ f0Þ�: ð15Þ

The first order form of Eq. (14) is given by

f00 ¼ qO sinðOtÞ: ð16Þ

Therefore, the first order solution of Eq. (14) may be written as

f0 ¼ �qO cosðOtÞ; ð17Þ

and

f ¼ �qO sinðOtÞ: ð18Þ
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Thus, using Eq. (13) one can take average of Eq. (14) to obtain the slow dynamics of the system as
given below:

.Z þ h/DSþ Z ¼ � .Xe; ð19Þ

where

/DS ¼
1

2p

Z 2p

0

ð ’Z � qO cos yÞU½f ’Z þ ’Xegf ’Z � qO cos yg� dy: ð20Þ

The average damping function /DS given by Eq. (20) is expressed as (see the appendix for
details)

/DS ¼

ð ’X � ’XeÞ þ
1

p
qO sin y1 � cos�1

’X � ’Xe

qO

� �
ð ’X � ’XeÞ

� �
; 8 ’X > 0 and j ’X � ’XejpqO;

1

p
cos�1

’X � ’Xe

qO

� �
ð ’X � ’XeÞ � qO sin y1

� �
; 8 ’Xo0 and j ’X � ’XejpqO;

’X � ’Xe; 8 ’X and j ’X � ’XejpqO;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

ð21Þ

Finally, one obtains the equation of motion governing the average low-frequency dynamics of the
system as

.X þ h/DSþ ðX � XeÞ ¼ 0; ð22Þ

where /DS is as described in Eq. (21). Eq. (22) is obviously a non-linear differential equation,
and it is not easy to solve this equation. However, by looking into the nature of the effective
damping function /DS; one can extract important information regarding the performance of the
isolation system. As an example, graphical natures of the effective damping function with and
without fast excitation are shown in Figs. 2(a) and (b), respectively. It is to be noted that the
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velocity. qO ¼ 2: (a) With fast excitation; (b) without fast excitation.
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damper is controlled in on–off fashion depending on the sign of the product of the absolute
velocity of the mass and the relative velocity across the damper. Therefore, for a particular value
of relative velocity across the damper, the damper produces either zero or some non-trivial force
depending on the sign of the absolute velocity of the mass. In semi-active sky-hook control
without fast excitation, as shown in Fig. 2(b), the damper turns off when the product of the
absolute and relative velocity are of opposite signs. This is because of the fact that under such
circumstances, the damper force acts in the direction of the absolute velocity of the mass, and
thereby tends to destabilize the system by instilling energy into it. However, it is observed from
Fig. 2(a) that in presence of fast excitation, the effective damping force may still act against the
absolute velocity of the mass (at least for some time) under the same circumstances. Moreover, in
presence of high-frequency excitation, overall low-velocity ðoqOÞ damping of the system is also
improved (zero velocity damping is qO=p). Therefore, the damper with fast excitation emulates
the ideal sky-hook damping more closely, and under such circumstances, one obviously expects
better isolation characteristics. The detailed discussion of the isolator performance is presented
elsewhere in the paper.

3.2. Triangular fast excitation

It is observed in the previous section that when sinusoidal fast excitation is used, the problem is
not amenable to analytical solutions. However, it is understood that the closed form analytical
solutions are possible for fast excitation having triangular pulse waveform. The shape of the
waveform of the fast excitation is depicted in Fig. 3, and has a non-dimensional amplitude q and
time period T0: Therefore, the magnitude of the velocity amplitude of the fast excitation is given by

V ¼
4q

T0
: ð23Þ
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In that case, the effective damping function /DS in Eq. (19) is expressed as

/DS ¼
ð ’Z þ V Þ�U½ð ’Z þ ’XeÞð ’Z þ V Þ� þ ð ’Z � V Þ�U½ð ’Z þ ’XeÞð ’Z � V Þ�

2
: ð24Þ

The general shape of /DS is illustrated in Fig. 4. From Fig. 4, it is observed that the effective
damping /DS is a piecewise linear function, and this renders Eq. (19) solvable in the closed form.
In what follows, the method of solution for single-harmonic base excitation is described in detail.
Two different types of solutions are possible as listed below:

(1) j ’Zj > V ; Fig. 5(a),
(2) j ’ZjoV ; Fig. 5(b).
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Fig. 4. The general shape of the effective damping function /DS for triangular fast excitation: ——, positive absolute

velocity; - - - - -, negative absolute velocity.

Fig. 5. Types of solutions under consideration: ——, dZ=dt; - - - - -, dX=dt:
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Case (1): In this case, one can split Eq. (19) into following three linear equations, each valid for
a particular time interval:

Z ¼ Z1; .Z1 þ Z1 ¼ o2 sinðotþ jÞ 80otpT1

Z ¼ Z2; .Z2 þ
h

2
ð ’Z2 þ V Þ þ Z2 ¼ o2 sinðotþ jÞ 8T1ptpT2

Z ¼ Z3; .Z3 þ h ’Z3 þ Z3 ¼ o2 sinðotþ jÞ 8T2ptpp=o

9>>>=
>>>;

8 ’Z þ ’XeX0; ð25Þ

where

Xe ¼ sinðotÞ:

The solution being symmetric, only a single half of the time period is considered. To adjust the
arbitrary setting of the time origin, an unknown phase j is introduced. Now one can express the
solutions of Eq. (25) as given below:

Z1 ¼ d1 cosðZ1tÞ þ d2 sinðZ1tÞ þ M1 sinðotþ jÞ; ð26Þ

where

M1 ¼
o2

1� o2
and Z1 ¼ 1:

Z2 ¼ e�lðt�T1Þ½d3 cosðZ2ðt� T2ÞÞ þ d4 sinðZ2ðt� T2ÞÞ� þ M2 sinðotþ jþ y2Þ �
Vh

2
; ð27Þ

where

l ¼
h

4
; M2 ¼

o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� o2Þ2 þ ð0:5hoÞ2

q ; y2 ¼ tan�1
�0:5ho
1� o2

� �
; Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
:

Z3 ¼ e�2lðt�T2Þ½d5 cosðZ3ðt� T2ÞÞ þ d6 sinðZ3ðt� T2ÞÞ� þ M3 sinðotþ jþ y3Þ; ð28Þ

where

M3 ¼
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ2 þ ðhoÞ2
q ; y3 ¼ tan�1

�ho
1� o2

� �
; Z3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

h

2

� �2
s

:

In Eqs. (26)–(28), di ði ¼ 1;y; 6Þ are unknown constants which can be evaluated as described
below. Considering the continuity, C1 smoothness, symmetry and periodicity of the solution, one
can write the following nine relationships between the three segments of the solution:

’Z1ðT1Þ ¼ ’Z2ðT1Þ ¼ �V ;

Z1ðT1Þ ¼ Z2ðT1Þ;

Z2ðT2Þ ¼ Z3ðT2Þ;

’Z2ðT2Þ ¼ ’Z3ðT2Þ;

Z1ð0Þ ¼ �Z3
p
o

� �
;
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’Z1ð0Þ ¼ �o cosj;

’Z3
p
o

� �
¼ o cosj: ð29Þ

Using Eqs. (29), one finds nine equations for nine unknowns, namely di ði ¼ 1;y; 6Þ; and
j; T1; T2: However, a closer look shows that di ði ¼ 1;y; 6Þ can be explicitly expressed as
functions of j; T1; T2; through the following equation:

½A�fdg ¼ fbg; ð30Þ

where

½A� ¼

�Z1 sinðZ1T1Þ Z1 cosðZ1T1Þ 0 0 0 0

0 0 �l Z2 0 0

cosðZ1T1Þ sinðZ1T1Þ �1 0 0 0

0 0 0 0 �2l Z3
1 0 0 0 e�2lTd cosðZ3TdÞ e�2lTd sinðZ3Td Þ

0 Z1 0 0 0 0

2
6666666664

3
7777777775
;

with

Td ¼
p
o
� T2;

fdg ¼ fd1 d2 d3 d4 d5 d6g
T;

and

fbg ¼

�M1o cosðoT1 þ jÞ � V

�M2o cosðoT1 þ jþ y2Þ � V

�M1 sinðoT1 þ jÞ þ M2 sinðoT1 þ jþ y2Þ � Vh=2

V � M3o cosðoT2 þ jþ y3Þ

M3 sinðjþ y3Þ � M1 sin j

�ðM1 þ 1Þo cosj

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
:

Thus, one is left with only three non-linear algebraic equations in three unknowns, which can be
solved, and back-substituted to express the solution of Eq. (19) as

ZðtÞ ¼ Z1 þ ðZ2 � Z1ÞUðt� T1Þ þ ðZ3 � Z2 � Z1ÞUðt� T2Þ: ð31Þ

Finally, X ðtÞ is obtained as X ðtÞ ¼ ZðtÞ þ Xe:
Case (2): In this case, one simply considers the segment Z2; and proceeds in the similar fashion.

Stability of the solutions thus obtained can be ascertained using the method of error propagation [20].

3.3. Numerical results and discussions

In Sections 3.1 and 3.2, the effective damping functions are constructed analytically for single-
harmonic and triangular fast excitation. It is understood that in presence of fast excitation, the
effective damping function emulates the ideal sky-hook damping in a much better way, and as a
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consequence one expects better transmissibility characteristics compared to that obtained from
ordinary on–off damping. In the present section, a detailed study of the performance of on–off
dampers with fast excitation is carried out. The displacement transmissibility is taken as the
performance index. It is to be noted that if base excitation is taken as X�

e ¼ x0 sinðoetÞ; non-
dimensional base excitation becomes Xe ¼ sinðotÞ; where o ¼ oe=on: Then displacement
transmissibility is equivalent to X :
It is discussed in Section 3.2 that analytical solutions of the transmissibility characteristics are

difficult to obtain for harmonic fast excitation. Therefore, numerical solutions of Eq. (6) are
obtained using the ‘Dormand–Prince 8(5,3)’ algorithm. However, for triangular fast excitation
and single-harmonic base excitation, closed-form analytical solutions are obtained. Analytically
obtained transmissibility plots of the on–off isolator without and with triangular fast excitation
are shown in Fig. 6. In the same figure, analytical results are compared with that obtained from
the direct numerical integration of equation of motion. Transmissibility curve of an ideal sky-
hook damper is also shown for comparison. From Fig. 6, it is observed that by proper choice of
the strength of fast excitation substantial performance gain may be obtained over the on–off
isolator without fast excitation and even the ideal sky-hook isolator. Performance can be
improved continuously over a wide frequency range by increasing the fast excitation velocity (V in
this case). Maximum improvement is observed near the natural frequency. Thus, it is possible to
construct a stiffer isolator having natural frequency not much different from the operating range
of frequencies. Fig. 7 illustrates the effect of damping parameter h on the isolator performance.
From Fig. 7, it is observed that the effect of fast excitation on the isolator performance is
pronounced for higher values of h: In fact, fast vibration acts on the system by improving the
effective damping characteristics. Frequency responses of the transmissibility characteristics of the
system without and with sinusoidal fast excitation are shown in Figs. 8 and 9, respectively. Similar
characteristics are observed as in the previous case.
It is interesting to compare the analytically obtained effective damping characteristics with that

obtained by numerical integration. Effective damping function obtained from direct numerical
integration is plotted in Fig. 10. To obtain the figure, relative velocity across the damper and
damping force are sampled at the rate of 100/unit time for a total sample period of 100. These
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Fig. 6. Transmissibility curves of on–off isolator with and without triangular fast excitation: – – – – –, V ¼ 1:0
(analytical); J; V ¼ 1:0 (numerical); ——, V ¼ 2:5 (analytical); W; V ¼ 2:5 (numerical); - - - - - -, without fast

excitation, h ¼ 0:5; — - - — - -, ideal sky-hook damping.
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Fig. 9. Transmissibility plots with and without harmonic fast excitation. h ¼ 1:0 : ?? , ideal sky-hook isolator; - - - -,

on–off isolator; ——, on–off with fast excitation ðqO ¼ 2:0Þ; – - – - –, on–off with fast excitation ðqO ¼ 3:0Þ:

Fig. 7. Effect of damping factor h on transmissibility curves: ——, h ¼ 0:5 (analytical); – – –, h ¼ 1:0 (analytical);

- - - - - - -, h ¼ 1:5 (analytical); &; h ¼ 0:5 (numerical); J; h ¼ 1:0 (numerical); W; h ¼ 1:5 (numerical). V ¼ 1:

Fig. 8. Transmissibility plots with and without fast excitation. h ¼ 0:5: ; ideal sky-hook; - - - -, on–off without fast
excitation; ——, on–off with fast excitation ðqO ¼ 2Þ; - � - � -�; on–off with fast excitation ðqO ¼ 3Þ; – - - – - - –, on–off
with fast excitation ðqO ¼ 4Þ:
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signals are subsequently processed through a low-pass elliptical filter of order 8 having
the frequency response as shown in Fig. 11. From Fig. 10, one observes two branches of the
effective damping curve; the upper curve is for positive absolute velocity and the lower one for
negative absolute velocity. Comparing Figs. 4(a) and 10, one finds good qualitative as well as
quantitative agreements (for the sake of clarity Figs. 4 and 10 are not superimposed) between the
analytical and numerical effective damping characteristics. The scatter of the numerical data in
Fig. 10 should not surprise one. As the effective damping plot is constructed after filtering (low-
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Fig. 10. Numerically simulated effective damping function for sinusoidal fast excitation. h ¼ 1:0; q ¼ 0:002;O ¼ 1000;
o ¼ 2:5:

Fig. 11. Frequency response of the elliptical low-pass filter.
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pass) the signals generated by stimulating the full model (Eq. (6)), there are still some high-
frequency components present. Though the high-frequency part causes the data to scatter, one is
only interested in the average damper force. A better filter characteristic might have minimized the
data scatter. In Fig. 10, one may note the presence of vertical transition branches, which are
missing from Fig. 4. This is because of the fact that in numerical simulation (possibly also in
practice), transition from positive absolute velocity to negative absolute velocity is not always
instantaneous. For some parameter values, transition is closely resembling sticking phenomena [1]
observed in friction interfaces. This sticking phenomenon is illustrated in Fig. 12(a). Sticking is
particularly present in a system either with high value of damping factor h or high amplitude of
velocity of fast excitation (equivalent to high effective damping).
Comparisons of the time histories of the switch values S with and without fast excitations are

made in Figs. 12(b) and (c). From Fig. 12(c), one observes that besides the low-frequency
switching intervals, several high-frequency transitions between the on and off phases are present
in a single period of the switch time history. This accounts for the enhanced effective damping
characteristics of the system.

4. Theoretical analysis with dynamic friction model

The model of the friction damper considered hitherto is only a simplified steady state
representation of more rigorous dynamic models of friction available in literature. One of these
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Fig. 12. Time history of response and the switch value for absolute control. (a) Time history of displacement and

absolute velocity with fast excitation: ——, displacement; - - - - -, absolute velocity. (b) Time history of switch value

without fast excitation. (c) Time history of switch value with fast excitation: h ¼ 1:0; o ¼ 1:1; q ¼ 0:002; O ¼ 1000:
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dynamic models is known as the LuGre [9] friction model, where friction force is described
as average force of deflection of the asperities (modelled as spring-like elastic bristles) of
the frictional interface. The equation of motion of the system illustrated in Fig. 1 is then
written as

mX�00
þ kðX� � X�

e Þ þ S�N jX�0
� X�0

e � X�0

f j s�0 y� þ s�1
dy�

dt
þ s�2 ðX

�0
� X�0

e � X�0

f Þ
� �

¼ 0;

dy�

dt
¼ ðX�0

� X�0

e � X�0

f Þ � jX�0
� X�0

e � X�0

f j
s�0 y�

m
; ð32Þ

where

S� ¼ U½X�0
ðX�0

� X�0

e � X�0

f Þ�; with Uð:Þ as Heaviside step function;

In the above equation s�0 ; s�1 and s�2 are bristle stiffness, bristle damping and viscous damping
coefficients, respectively. S� is the switch function, N is normal load on the friction joint and m is
coefficient of friction. y� represents average bristle deflection of the friction interface. Though in
the full form of the LuGre friction model the Stribeck effect parameters are also included, it is of
no importance in the present study, and hence is excluded form the model. A non-dimensional
form of Eq. (32) may be written as

.X þ ðX � XeÞ þ SF�
n j ’X � ’Xe � ’Xf j s0Y� þ s1

dY�

dt
þ s2ð ’X � ’Xe � ’Xf Þ

� �
¼ 0;

dY�

dt
¼ ð ’X � ’Xe � ’Xf Þ � j ’X � ’Xe � ’Xf j

s0Y�

m
; ð33Þ

where

F�
n ¼

N

mon

; Y� ¼
y�

x0
; s0 ¼ s�0 x0; s1 ¼ s�1 x0on; s2 ¼ s�2 x0on; S ¼ U½ ’Xð ’X � ’Xe � ’Xf Þ�;

and other parameters are as defined in Section 2.
Putting Y ¼ X � Xe � Xf ; Eq. (33) can be rewritten as

.Y þ Y þ D ¼ � .Xe � .Xf � Xf ;

dY�

dt
¼ ’Y � j ’Yj

s0Y�

m
; ð34Þ

where

D ¼ SF�
n j ’Yj s0Y� þ s1

dY�

dt
þ s2 ’Y

� �
¼ SF�

n j ’Yj s0Y� þ s1 ’Y � j ’Yj
s0Y�

m

� �
þ s2 ’Y

� �
and

S ¼ U½ð ’Y þ ’Xe þ ’Xf Þð ’YÞ�:
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4.1. Effective damping for triangular fast excitation

The triangular fast excitation is as illustrated in Fig. 3. According to the MDPM [10], one can
split the motion described in Eq. (34) into slow ðYs;Y�

s Þ and fast ðf1;2Þ components as

Y ðtÞ ¼ YsðtÞ þ T0f1ðt;TÞ;

Y�ðtÞ ¼ Y�
s ðtÞ þ T0f2ðt;TÞ; ð35Þ

where

T ¼ T�1
0 t;

and

/f1;2S ¼ T�1
0

Z T0

0

f1;2ðt;TÞ dT ¼ 0: ð36Þ

From Eq. (35), one obtains

’YðtÞ ¼ ’YsðtÞ þ f0
1 þ T0

’f1; ð37Þ

.YðtÞ ¼ .YsðtÞ þ f00
1T�1

0 þ 2 ’f0
1 þ T0

.f1; ð38Þ

’Y�ðtÞ ¼ ’Y�
s ðtÞ þ f0

2 þ T0
’f2; ð39Þ

where 0 and � denote differentiation with respect to T and t; respectively.
Now putting Eqs. (37)–(39) in Eq. (34), one obtains

f00
1 ¼ �T0

.Ys þ 2 ’f0 þ Ys þ D þ .Xe

� �
� T0

.Xf þ OðT2
0 Þ; ð40aÞ

f0
2 ¼ � ’Y�

s þ ’Ys þ f0
1 � j ’Ys þ f0j

s0Y�
s

m
; ð40bÞ

where 0 denotes differentiation with respect to T :
If fast excitation is strong enough such that

T0
.XfBOð1Þ or higher;

the first order form of Eq. (40a) becomes

f00
1 ¼ �T0

.Xf : ð41Þ

Integrating Eq. (41) one obtains f0
1 as a square wave of amplitude V ; as described in Section 3.2.

Using this information and Eq. (36), Eqs. (40a) and (40b) are averaged to obtain the slow
dynamics of the system as

.Ys þ Ys þ/DðY�
s ; ’Ys þ f0

1ÞS ¼ � .Xe; ð42aÞ

’Y�
s ¼ ’Ys �/j ’Ys þ f0

1jS
s0Y�

s

m
; ð42bÞ

where

/DS ¼ SpF�
n j ’Y

p
s j s0Y

�
s þ s1 ’Yp

s � j ’Yp
s j
s0Y�

s

m

� �
þ s2 ’Yp

s

� �� �
; ð43Þ
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with

Sp ¼ U½ð ’Yp
s þ ’XeÞð ’Yp

s Þ�;

where

’Yp
s ¼ ’Ys þ f0

1:

Thus, one obtains

/DS ¼ 0:5F�
n ðD

þ
1 þ D�

1 Þ; ð44Þ

with

Dþ
1 ¼ SþF�

n j ’Y
þ
s j s0Y

�
s þ s1 ’Yþ

s � j ’Yþ
s j

s0Y�
s

m

� �
þ s2 ’Yþ

s

� �

and

D�
1 ¼ S�F�

n j ’Y
�
s j s0Y

�
s þ s1 ’Y�

s � j ’Y�
s j

s0Y�
s

m

� �
þ s2 ’Y�

s

� �
;

where

Sþ ¼ U½ð ’Yþ
s þ ’XeÞð ’Yþ

s Þ�;

’Yþ
s ¼ ’Ys þ V

and

S� ¼ U½ð ’Y�
s þ ’XeÞð ’Y�

s Þ�;

’Y�
s ¼ ’Ys � V :

Similarly, Eq. (42b) can be written as

e’x ¼ ’Ys �
1

2
½j ’Ys þ V j þ j ’Ys � V j�

x
m
; ð45Þ

where

x ¼ s0Y�
s and e ¼

1

s0
:

As s0 is generally numerically very large, one assumes e{1; and hence Eq. (45) turns out to be a
standard singular perturbation problem. Putting e ¼ 0 in Eq. (45), one obtains the slow manifold
of Eq. (45) as follows:

x ¼
2m ’Ys

j ’Ys þ V j þ j ’Ys � V j
: ð46Þ

Using the following time and co-ordinate transformation,

#x ¼ x�
2m ’Ys

j ’Ys þ V j þ j ’Ys � V j
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and

#t ¼
t
e
;

and considering ’Ys as constant, one obtains the boundary layer problem describing the fast
dynamics as

d#x
d#t

¼ �
1

2
#x

j ’Ys þ V j
m

þ
j ’Ys � V j

m

� �
: ð47Þ

One may observe that the equilibrium point

#x ¼ 0

of the boundary layer problem (47) is uniformly asymptotically stable for all velocities. Therefore,
according to the Tikhonov’s theorem, the slow manifold given by Eq. (46) describes steady state
dynamics of x: Thus, one can write

Y�
s ¼

1

s0

� �
2m ’Ys

j ’Ys þ V j þ j ’Ys � V j
: ð48Þ

Therefore, using Eqs. (44) and (48), one obtains the effective damping characteristics of the
system. As a numerical example, the graphical nature of the effective damping is shown in Fig. 13.
As in the case of steady state friction model, the effective damping characteristics for dynamic
friction model are also having two branches of curves, each for a particular direction of absolute
velocity of the mass. Around lower values of relative velocity (low-frequency part) across the
damper, damping is improved and acting against absolute velocity of the mass, and hence a better
isolation performance is predicted. At higher relative velocities, unfavourable damping behaviour
is observed, and the range of relative velocities corresponding to this unfavourable damping
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Fig. 13. Effective damping characteristics for the LuGre model of friction with triangular fast vibration: ; with fast
vibration ðdX=dt > 0Þ; - - - -, with fast vibration ðdX=dto0Þ; ——, without fast vibration ðdX=dt > 0Þ; – – – –, without
fast vibration ðdX=dto0Þ:
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behaviour shifts towards higher velocity with the increasing strength of fast excitation. However,
numerical simulations have shown that relative velocity does not reach that value provided proper
choice of the strength (here V ) of fast excitation is made. The effective damping characteristics
with fast vibration may be quantitatively characterized by the damping values of the three points
A; B (low-velocity peak in the effective damping plot) and C as illustrated in Fig. 13. The values of
the effective damping at those points are expressed as follows:

/DSA ¼ 0:5F�
n s1V

2; ð49aÞ

/DSB ¼
F�

n

2

mC
V

ðCþ V Þ þ s1ðCþ V Þ2 � s1ðCþ V Þ2
C
V

� �
; ð49bÞ

where C is the relative velocity at the point B and is given by

C ¼
1

g
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gV

ph i
with g ¼

3s1
m� s1V

;

and

/DSC ¼ VmF�
n : ð49cÞ

Obviously the values of /DSA and /DSC increase with the increasing value of normal load, the
strength of the fast excitation, frictional properties (s1 and m) of the damper. Both the velocity
(low-frequency part of the relative velocity across the damper) and the damping value of the point
B; /DSB increase with the strength of fast excitation ðV Þ: The change of the co-ordinates of the
point B with V is shown in Fig. 14. Therefore, one may improve the effective damping
characteristics of the system by increasing the strength of fast excitation.

4.2. Isolator performance for triangular fast excitation

Displacement transmissibility of the system are obtained by numerically simulating equation of
motion (4.1.2) for harmonic base excitation, and plotted in Fig. 15. From Fig. 15, it is observed
that for weaker fast excitation, there exists a jump resonance in the frequency response. This jump
resonance is similar to that obtained in case of soft non-linear oscillators, and associated with the
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Fig. 14. Variation of the velocity and effective damping of point B with the strength of fast vibration: - - - -, velocity of

the point B; ——, effective damping of point B: m ¼ 0:2; F�
n ¼ 1:0; s1 ¼ 1; s0 ¼ 100:
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‘hump’ in the effective damping characteristics shown in Fig. 13. However, this undesirable jump
resonance is completely removed by increasing the strength of fast excitation.

4.3. Isolator performance for harmonic fast excitation

In this section, direct numerical simulation equation of motion (33) with harmonic base and
fast excitation is carried out to plot the transmissibility characteristics. The parameter values of
the model are so chosen as to keep the transmissibility characteristics without fast excitation
similar to that obtained in case of the steady state Coulomb’s friction model. A transmissibility
characteristic is shown in Fig. 16. From Fig. 16, it is observed that using fast excitation,
substantial improvement is obtained in the transmissibility characteristics.
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Fig. 16. Transmissibility plot without and with sinusoidal fast excitation considering LuGre friction model. s0 ¼
100; s1 ¼ 1; s2 ¼ 0; m ¼ 0:5; F�

n ¼ 1:??; without fast excitation; - - - - -, with fast excitation, q ¼ 0:0015; O ¼
1000; ——, with fast excitation, q ¼ 0:002; O ¼ 1000:

Fig. 15. Displacement transmissibility plot without and with triangular fast vibration. s0 ¼ 100; s1 ¼ 1; F�
n ¼ 1;

m ¼ 0:2: - - - - -, V ¼ 0; ——, V ¼ 1:3; – - – - –, V ¼ 1:5:
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It is also interesting to look into the effective damping plot for harmonic fast excitation. Such a
plot is generated and plotted in Fig. 17. The methodology used in plotting Fig. 17 is similar to that
used in Section 3.1.

5. Conclusions

An alternative isolator configuration with high-frequency low-amplitude excitation at the base
of an on–off friction damper is discussed in this paper. Friction is modelled using the standard
Coulomb’s friction model and the LuGre friction model. Two different types of fast excitations,
namely single-harmonic and triangular wave excitation are considered for theoretical analysis.
Analytical expressions are obtained for the effective damping characteristics of the damper under
fast excitation, and the performance of the isolators are discussed in light of the effective damper
characteristics. It is observed that the effective damper characteristics are improved by increasing
the damper parameters as well as the strength of fast excitation. Performance of the isolator is
discussed in terms of the displacement transmissibility characteristics. It is shown that the
proposed isolator with fast excitation input performs much better than the corresponding isolator
without fast excitation input, and with proper choices of the parameters, the proposed isolator
performs even better than the ideal sky-hook isolator does.
It is observed from the transmissibility plots that with fast vibration, displacement

transmissibility remains very low near the frequency range around the isolator resonance
frequency. Thus, it is possible to develop rigid isolators with good transmissibility characteristics.
Such configuration of isolators may be suitable for protecting very lightweight and sensitive
equipment in situations where fluidic dampers are unsuitable.
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Fig. 17. Numerically simulated effective damping plot with harmonic fast excitation and dynamic friction model.

s0 ¼ 100; s1 ¼ 1; s2 ¼ 0; m ¼ 0:5; F�
n ¼ 1; q ¼ 0:001; O ¼ 1000; o ¼ 1:4:
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Appendix

/DS ¼
1

2p

Z 2p�y1

y1
ð ’Z � qO cos yÞ dy 8 ’Xe þ ’Z > 0 and j ’ZjpqO

¼ ’Z þ
1

p
½qO sin y1 � y1 ’Z�;

where

y1 ¼ cos�1
’Z

qO

� �
;

/DS ¼

1

2p

R y1
0 ð ’Z � qO cos yÞ dyþ

R 2p
2p�y1

ð ’Z � qO cos yÞ dy
h i
¼
1

p
½ ’Zy1 � qO sin y1�;

8 ’Xe þ ’Zo0 and j ’ZjpqO;
1

2p

R 2p
0 ð ’Z � qO cos yÞ dy

¼ ’Z;

8 ’Xe þ ’Z > 0 and ’ZXqO;
1

2p

R 2p
0 ð ’Z � qO cos yÞ dy

¼ ’Z;

8 ’Xe þ ’Zo0 and ’Zp� qO;

0

otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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